Memetic Algorithm with Hybrid Mutation Operator

نویسنده

  • Manju Sharma
چکیده

Genetic Algorithms are the biologically inspired optimization algorithms that mimic the process of natural evolution. The performance of evolutionary algorithm in finding the optimal solutions can be broadly categorized into two strategies: exploration and exploitation, but it has been clearly shown in the literature that one cannot claim that which one is better than others in all the problems or all stages of the problems. Different operators used in evolutionary approaches are either inclined towards exploration or towards exploitation but problems need the operators having the blend of both. This paper studies different mutation operators and a hybrid mutation operator has been proposed, the behavior of which is controlled by the local search. So, in the early cycle of evolution it is more like exploration and gradually it shifts towards exploitation that prevents the algorithm to stick in local optima. The experiments have been conducted using TSP oliva30 and Eil51 benchmark problems and implementation is carried out using MATLAB. Results show the improvement of memetic algorithm with hybrid mutation operator over existing genetic algorithm with simple mutation operators. Keywords— Genetic Algorithm; Mutation; Selection; Memetic Algorithm

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hill Climbing Based Hybrid Crossover in Genetic Algorithms

Genetic Algorithms are biologically inspired optimization algorithms. Performance of genetic algorithms mainly depends on type of genetic operators – Selection, Crossover, Mutation and Replacement used in it. Crossover operators are used to bring diversity in the population. This paper studies different crossover operators and then proposes a hybrid crossover operator that incorporates knowledg...

متن کامل

A Memetic Algorithm for Hybrid Flowshops with Flexible Machine Availability Constraints

This paper considers the problem of scheduling hybrid flowshops with machine availability constraints (MAC) to minimize makespan. The paper deals with a specific case of MAC caused by preventive maintenance (PM) operations. Contrary to previous papers considering fixed or/and conservative policies, we explore a case in which PM activities might be postponed or expedited while necessary. Regardi...

متن کامل

Solving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm

We present an improved hybrid genetic algorithm to solve the two-dimensional Euclidean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local searc...

متن کامل

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

HYBRID COLLIDING BODIES OPTIMIZATION AND SINE COSINE ALGORITHM FOR OPTIMUM DESIGN OF STRUCTURES

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014